Category Archives: Heavy Equipment Manufacturing

Recommendations for reducing worker injuries for steel and metal manufacturers

BT8A7713R2collarshirt

From Scott Brooksby’s article, “Secondary Processes Don’t Translate to Secondary Risks“, published in FF Journal, a metal fabricating and forming trade magazine, which includes recommendations for reducing worker injuries for steel and metal manufacturers:

Global demand for steel continues to increase, with mills and production facilities focused on production processes and ramping up output. With the urgency to increase production, however, risk of serious workplace injuries often is under-recognized in secondary processes—most notably, quality control testing operations.

Through our experience, we’ve identified simple and affordable steps mill management can take to reduce the incidence of major injuries and associated liabilities that occur at an inordinate rate in quality control testing processes of metals manufacturing.

A recent example took place at a steel mill that processes around 30,000 samples per year, operating a customized, decades-old conveyor system.

On the main production line at this mill, tail samples are cut from steel plate.  The samples, slabs about 1 1⁄2-in.-thick, 8-ft.-long and weighing more than a ton, are sidled to a conveyor system leading to the sample-burning room. There, the sample tail is cut into smaller pieces to be shipped to a lab for testing. Electronic and manual controls are in place to prevent slabs from posing a danger to workers. When the system operates as it should, samples are restrained by a series of gates, arriving at a final gate that secures the slab as a laser torch cuts the tail sample into pieces, each weighing about 500 lbs.

One day, the final metal gate remained shut as the penultimate gate opened, freeing the sample slab to collide with the sample still in the clutch of the final gate. The sample tail flipped into the air, striking a temporary employee before destroying the machinery’s electronic control system.

A co-worker prevented further injury and damage by deactivating the equipment with a retrofitted electronic emergency override. Claims against the mill were resolved at significant financial expense.

What lessons can heavy industry draw from this incident to prevent similar events from occurring?

Immediately examine equipment involved in secondary processes—such as QC test sampling—and put requisite safeguards into place. It’s common for management to concentrate on production line safety and operations. All the more reason to exhibit prudence by reviewing conditions in areas such as sample burning, and take steps such as safety engineering studies to identify issues and develop options to retrofit or augment existing safety devices.

For example, conveyor equipment in sample-burning lines often is customized, and can lack safety elements incorporated in standardized, production line equipment. In this case, an engineering study on the sample conveyor may have identified a safety retrofit as simple as horizontal spacers spanning across the conveyor to prevent a sample tail from careening off the conveyor.

Document safety or process improvements. Virtually every steel, metal or component manufacturing facility has old equipment in use. In most cases, it has been upgraded or retrofitted for operation with the safety of the worker and the workplace as priority concerns. We recognize that documentation on its own won’t prevent injury.

At the same time, we’ve seen how dramatically lack of production environment safety retrofit documentations can impact the size of settlements and verdicts in manufacturing workplace personal injury cases.  Safety retrofits have value in and of themselves. But strictly from a standpoint of managing financial risk, it’s crucial to document safety retrofits, retain these documents indefinitely and maintain them in strict compliance with formal document destruction policies.

Review workforce management and training practices in “first assignment” areas such as test-sample burning. As with the  case of our real-world example, secondary processes often are areas where less-experienced or temporary workers are first put to work in steel production facilities. Facility management is wise to recognize this as a potential risk, put in place precautions, staff these areas appropriately and sufficiently train inexperienced workers who may not be conscious of dangers inherent in quality control sampling.

Variables that can affect burn injury cases

Most experienced defense lawyers know that the variables in burn injury cases prevent anything resembling a guarantee of a good result.  The following variables can affect the outcome of a case, including the potential financial exposure that a defendant or its insurer or worker’s compensation carrier may face:

– the different types of skin grafts and skin graft surgical procedures commonly involved in burn cases;

– whether, in high total body surface area (tbsa) burns, complete excision and grafting can be completed in a single principal procedure;

– the treatment technique, surgical technique and treatment philosophy of the physician; and

– the relative size of the burn center, as larger centers tend to be able to perform certain procedures–not because of greater skill, but because of the size and number of  surgical teams necessary.

Skin Graft Classification and Skin Graft Surgical Procedures

In burn injury cases, surgical removal (excision or debridement) of the damaged skin is followed by grafting.  The grafting is designed to reduce the course of hospital treatment and improve function and cosmetic appearance.  There are typically two types of skin grafts–mesh grafts and sheet grafts.  A less-common, third type of graft is a composite graft.

Mesh Grafts

Mesh grafting is known as partial-thickness grafting, or split-thickness grafting.  With mesh grafting, a thin layer of skin is removed from a healthy part of the body, known as the donor site.  It is processed through a mesher, which makes apertures into the graft. The graft then becomes mesh-like, allowing it to expand approximately nine times its original size.  Such grafts are used to cover large areas and the rate of auto-rejection is lower.  Harvesting of these grafts from the same site can occur again after as little as six weeks.  The surrounding skin requires dressings and the donor site heals by reepithelialization.

Using a dermatome, the surgeon usually produces a split-thickness graft which is carefully spread on the bare area to be covered.   It is held in place by a few small stiches or surgical staples.   The graft is initially nourished by a process called plasmatic imbibition in which the graft drinks plasma.  New blood vessels begin growing from the recipient area and into the transplanted skin within 36 hours in what is called capillary inosculation.  To prevent accumulation of fluid, the graft is frequently meshed by making lengthwise rows of short interrupted cuts, each a few millimeters long, with each row offset to prevent tearing.  This allows the graft to stretch and more closely approximate the contours of the affected area.

Sheet Grafts

In the alternative, a sheet graft, which is a full-thickness graft, involves pitching and cutting away skin from the donor section.  Sheet grafts consist of the epidermis and entire thickness of the dermis.  Sheet grafts must be used for the face, head and hands because contraction must be minimized.  If sheet grafting is necessary but the donor sites are insufficient, the outcome is likely to be less satisfactory, and the financial exposure in such cases will be higher.

With sheet grafting, the donor site is either sutured closed directly or covered by a split-thickness graft.  Sheet grafts are more risky in terms of rejection, yet counter-intuitively leave a scar only on the donor section.  Sheet grafts also heal more quickly and are less painful than partial-thickness grafting.

Sheet grafting is usually difficult in severe aviation or manufacturing burns because those involve high-percentage tbsa burns and donor sites are therefore limited.

Composite Grafts

The third type of graft, a composite graft, is a small graft containing skin and underlying cartilage or other tissue.  Donor sites would include the ears and other cartilage to reconstruct, e.g., nasal rim burns.

In High TBSA Burns, When Immediate, Complete Excision and Grafting is Completed in a Single Procedure, Damages Amounts May Be Lower.

In cases involving clearly severe, high tbsa burns, whether full or partial thickness, immediate, complete excision and grafting is usually indicated.  If immediate excision and grafting is complete–that is, done in a single procedure–a much larger surface area surgery can be completed with less blood loss.  This minimizes transfusion needs and dangers and also speeds physiological restoration.

Furthermore, an immediate, complete excision and grafting procedure can often allow use of good skin for grafting that would otherwise need to be excised.  If the procedure is not done immediately, less skin may be available for grafting.  In other words, skin that otherwise may have been healthy and usable when the plaintiff was first admitted to the hospital may die if the procedure is not done immediately, particularly if that skin is close to the burn site.

Immediate, complete excision and grafting also cuts down on the number of procedures and allows important vascular redevelopment to begin occurring sooner and supplying the graft locations with blood flow, which is essential to healing.

 The Treatment Technique, Surgical Technique and Treatment Philosophy of the Physician Can Be Outcome-Determinative

The simple fact is that some surgeons are more skilled than others, so the outcome may be better or worse depending on the skill of the physician.

There are also some advances in burn surgery that particular physicians are able to employ.  For example, in the most serious burn cases, grafts may be taken from other animals.  Such grafts are known as heterografts and, by design, they serve as temporary dressings that the body will unquestionably reject within days to a few weeks.  They are used in severe cases to reduce bacterial concentration of an open wound and reduce fluid loss.

Additionally, some surgeons are able to use cell cultured epithelial autograft (CEA) procedures, which involve removal of skin cells from a patient and the growth of new skin cell sheets in a lab.  Although the new sheets will not be rejected, they are typically only a few cells thick and do not stand up to trauma.  As a result, many such grafts do not take and the procedure must be repeated or an alternate procedure employed.

Furthermore, some physicians prefer to do more sheet grafting versus mesh grafting.  The physicians who prefer mesh grafting like it because they can cover much larger areas in a shorter period of time.  Conversely however, mesh grafting requires more revision surgeries, more of a risk that the grafts don’t take, and more contraction, which is disfiguring and requires further surgery.

Different groups of surgeons have their own philosophies and cultural preferences.  In Portland, Oregon, for example, there is one group of approximately five, highly-skilled burn surgeons who staff the Oregon Burn Center at Emanuel Hospital.  Due to the relatively small size of the burn center, they tend to wait four to seven days before conducting major graft procedures so that they can have a better assessment of the full extent of the injury.

The Relative Size of the Burn Center Can Be Outcome-Determinative

Larger burn centers, such as the ones at UC Davis or Harborview in Seattle, do not necessarily provide better treatment, but they are typically capable of complete excision and grafting at admission when there is a high percentage of the total body that sustains full-thickness burns or a combination of full-thickness and lesser degree burns.  This is a function of burn center size, not the skill of the physicians.  A full excision and grafting procedure is lengthy and generally requires two full surgical teams and at least two attending physicians and two assistant surgeons.  This type of procedure is generally not possible at relatively smaller burn centers such as the Oregon Burn Center.

Using Variables in Burn Cases to Assess Case Value and Adequately Prepare

The variables discussed above vary from case to case.  It is important to assess each one when valuing a burn injury case in order to determine the defendant’s likely exposure and prepare adequately for productive settlement discussions and, if absolutely necessary, trial.

 

An Introduction to Burn Injury Significance and Burn Centers

Burns Are Significant Injuries and Can Lead to Some of the Highest Jury Verdicts

Olson Brooksby appreciates the potential high-exposure value of burn injury cases.  Scott Brooksby has significant experience in serious, total body surface area (tbsa) burn injury and wrongful death cases.  Our lawyers understand the delicate nature of large burn injury cases and work to minimize exposure to our clients.

Defendants potentially subject to burn injuries should employ best safety practices and make every attempt to avoid such injuries.  Burns are one of the most serious injuries in personal injury cases.  They may be the result of chemical fire or exposure, explosions, paints, solvents, or conventional fire.  Sometimes burns are the result of contact with hot equipment or other product liability related events.  The defense of serious burn injuries, including those related to aviation, product liability and heavy manufacturing is a large part of the defense practice of Olson Brooksby.  A bad burn case in an aviation or heavy manufacturing accident, or as the result of a product liability defect can easily present high financial exposure to manufacturers and/or insurers.  Settlement exposure can climb into the millions or tens of millions, with verdicts at least as high.

Even when there appears to be a strong defense, defendants should not underestimate the overwhelming sympathy a jury will feel when it sees a burn victim, particularly with serious facial burns or burns to the extremities.  A good plaintiff’s lawyer will ask the jury to consider things like the profoundly disfiguring effects of a bad facial burn and the pain that everyday exposure to sunshine will cause its victim for life, or the lifelong gawking stares it will draw.

Similarly tragic are severe burns to the hands, which cannot be restored to even near full function or pre-burn aesthetics and result in pain every time the victim is touched.  When liability is clear, burn cases should be settled because, unlike other personal injury cases, deformities caused by burns can incense juries to the point where they cannot put their emotions aside.  The result can be verdicts in the millions or tens of millions, including punitive damages (particularly if children are involved or there is perceived recklessness).  Although the amount of burn verdicts used to depend on the region of the country where the case originated, such verdicts are now generally high in every jurisdiction.

If the burn injury case must be tried, it must be done with great sympathy for the victim  and careful attention to the medical aspects of the case, including future treatment, which may last decades and cost into the six or seven figures.

When trying a burn injury case, it is important to know where the injury occurred.  If a plaintiff has to be air lifted to a burn center, that can radically change the extent of the injury.  Similarly, it is important to know the details of the burn center where the plaintiff was treated because that can also change the extent of the injury and thus affect the jury verdict amount.

The Location of the Accident Can Change the Extent of the Injury and the Jury Verdict

In those industries where serious conventional burns are common, such as aviation disasters or steel or metal manufacturing, “serious” can arbitrarily be defined as full-thickness burns over 20% or more of the tbsa.  The location of a burn center and the length of time to transport the victim to the burn center can be outcome-determinative.  This is also particularly true where babies and children or those over sixty-five are the victims, or where there are serious burns to the face, head, extremities, or internal organs.

Manufacturers and insurers obviously do not choose where burn centers are located.  After an accident, first responders will obviously make needed decisions about transport.  Most heavy manufacturing, including that of aviation hot section components, is done near large metropolitan areas that typically have at least one burn center.  Perhaps some of the greatest danger lies in cases in remote areas where individuals are subject to burns from allegedly defective products.  For example, a person camping in a remote area of the Western United States who is badly burned by kerosene at a remote campsite may not be able to reach a burn center for hours.  There may be no cellular phone service and a helicopter ambulance may have to be dispatched from hundreds of miles away.

Depending on the severity and tbsa burned, the size and related capabilities of the burn center will have a direct impact on the plaintiff’s recovery, and consequently, the ultimate exposure to the manufacturer and/or insurer in any settlement or verdict.

All Burn Centers are Not the Same–They May Have Varying Treatment Philosophies, Training and Capabilities

The size of the burn center can also be outcome-determinative because smaller centers, such as the Oregon Burn Center at Emanuel Hospital, are generally not large enough to perform a full excision and grafting in high tbsa burn cases.  A full excision and grafting is where they do all of the procedures at once instead of one at a time.  Some burn physicians believe that, depending on the case, better outcomes are achieved through full excision and grafting in high tbsa burn cases.

There are approximately 45 regional burn centers in the United States.  Verification of burn centers is a joint program administered in the form of a rigorous review of the applicant centers by the American Burn Association (ABA) and the American College of Surgeons (ACS).  Many states do not have a regional burn center and most states have only one or two.  California has the most, with seven.  Most burn centers are run by a single group or an extremely limited number of groups of burn surgeons who practice at the facility.

Unlike hospitals, burn centers do not typically extend general privileges to physicians.  Most burn surgeons have been trained as general surgeons, and then have gone on to receive additional specialized training in burns.   Along the population corridor running down I-5 between Seattle and Davis, California there are three verified regional burn centers, one each in Seattle (Harborview), Portland (The Oregon Burn Center at Emanuel Hospital), and The UC Davis Regional Burn Center.

Training and available resources vary from center to center.  Burn centers also tend to have more pronounced treatment philosophies and cultures because they are staffed by relatively few surgeons who generally practice in the same group or just a few groups.  However, although burn center practice varies, it is imperative that those who are seriously burned reach a regional burn center as soon as possible because specialized treatment is inarguably outcome-determinative

The mechanics of injury, lots of fire, accelerant, and contact with temperatures in excess of 1,000 degrees are factors that are considered when determining whether burns are graftable from point of admission.  In any serious burn case, most intermediate facilities such as a conventional hospitals will seek to transfer a seriously burned patient, almost always by air, to a regional burn center as soon as stabilization occurs.

 

Mitigating Risk of Punch Press Amputations

With the incredible advances in safety equipment in and standards, one would think that punch press amputations would be a thing of the past.  However, they still occur today, and manufacturers with press operations need to be vigilant both about their safety equipment and practices, as well as their record-keeping

Extremely large metal punch presses can range in strength from about ten tons to 50,000 tons.  Larger presses that exceed something in the neighborhood of 150 tons can cost into the seven figures and present a tremendous capital investment burden, particularly for the small or mid-size metal component manufacturer.  Because of the incredibly high cost of this equipment, and because of the long life of the equipment and the possibility of retrofitting with modern safety devices, many ultra-heavy-duty punch presses are still in use today.  It is important that older equipment both be retrofitted with modern safety devices that comport with industry standards and that records of safety modifications or changes be maintained.

Scott Brooksby recently defended a mid-sized manufacturer that operated a hydraulic punch press that had been manufactured in approximately 1928 and was acquired by a client in approximately 1979.  After fifty-one years of continuous use, the punch press was still in excellent operating condition.  One day, for reasons that are not completely clear, the press descended and partially amputated the right hand of the manufacturer’s employee.  In the nearly 30 years before this accident, there had never been a single accident reported on the punch press.

These situations are often complicated by the number of, and nature of, control mechanisms, which can include foot pedals, hand pedals, electronic switches, buttons, or pedals that provide for slow “inch mode” movement, etc.  Often different operators will prefer different methods of use.  In this case, the primary operator was stationed at the front of the machine and would activate the press using an inch mode to set dies and then produce product more quickly as the operator at the rear removed and inserted the die in a continuous cyclical fashion, while the front operator operated the machine with a series of hand and foot pedals.

Although the press was originally built some eighty years before the accident, the manufacturer had diligently retrofitted the press with up-to-date safety modification, including 360-degree light curtains.  A commonly relied on safety device, light curtains are designed to stop descention of the press in the event that a hand or any object penetrated the light curtain.  In this case, the light curtains were installed both on the front and rear.  The light curtain appeared to have been interrupted at the time of the accident.  The precise cause of the accident will likely never be known.

After the press was acquired by the manufacturer, some add-ons and wiring and safety modifications were made.  The precise timing of the modifications was unclear.  The press was retrofitted with light curtains which were designed to prevent inch movement when the light curtains were broken. The front and rear light curtains appear to have been installed at different times. At some point prior to the accident, the light curtains were replaced with updated versions.  As part of routine maintenance procedures, the press was fitted with a new brake in 2004 or 2005. The new brake was not a safety add-on. The brakes on the machine were tested immediately after the accident and found in good order.

When the State Occupational Health and Safety Administration investigated, the accident maintenance records could not be located.

There are two important things to learn from this case:

1. Virtually every steel company, metal company, or manufacturer of component parts using these materials will have old (even decades-old) equipment that is working perfectly well and is perfectly safe by modern standards through the addition of retrofitted safety devices.  However, it is critical that such retrofitting be documented and that the documents be retained indefinitely, or maintained in strict compliance with a formal document destruction policy.

2. In most states, the OSHA agency conducting the investigation will want to interview, and will be entitled by statute or regulation to interview, employees involved in the workplace accident outside the presence of counsel, even if counsel has been retained and requested to be present.  This warrants the cost and discipline associated with diligent training.  Management should consider including a training module so that workers who are interviewed outside the presence of counsel focus only on speaking about what they saw, what they said, or what they heard others say, all limited to a first-hand perspective.

 

 

 

Assess Steel Quality Control Testing For Potential of Personal Injury

Despite the recent domestic economic downturn, global demand for steel, other metals and heavy equipment continues to increase in emerging markets and elsewhere.  With the increasing demand for production, a potential source of personal injury that is often overlooked is quality control testing.  Manufacturers face pressures to produce, poor communication with and between workers, and what can sometimes be decades-old equipment.  This equipment has usually been continuously retrofitted and appears to function perfectly well, but that is not always the case and serious injury can occur during secondary procedures.

For example, Scott Brooksby defended a steel mill against the claim of a temporary worker who was subject to injury when he was struck in the head by a tail sample cut during sample burning operations.  During steel production, tail samples are typically cut from sheet steel.  At temperatures approaching 1300 degrees, the tails, which vary in size, are routed on a conveyor system into a sample burning room so that samples can be taken for routing to the laboratory to conduct tensile, radiographic and other quality control tests.  The conveyor system is a series of metal rollers controlled by a series of steel gates that regulate the tail samples so that they do not collide and cartwheel into the air or fall from the conveyor, posing a danger to workers.

In Scott Brooksby’s case, a steel tail approximately 8 feet long and 1.5 inches thick was cut from a sheet in the main production roller room.  At approximately 1350 degrees Fahrenheit, the sample, which approached 500 pounds, was routed into the sample burner room.  Sample burning and many other quality control processes may take place in smaller rooms adjacent to the main production halls.  The sample tail is diverted from the main hall after being cut from sheet steel via a steel roller conveyor system where it would pass through a series of gates controlled either electronically or by a set of foot or hand pedals.  By the time the eight foot sample reaches the penultimate steel gate it has cooled to approximately 1,000 degrees.  Theoretically, after passage through the final gate, the section is cut into smaller lengths, approximately 18-21 inches long, which can be used to stretch and test tensile strength or other quality control issues.

On this particular day, the final gate, at the sample burner itself (which is a laser torch used to cut the 18-21 inch tails), jammed shut just as the penultimate gate opened, allowing the eight-foot section to roll down the conveyor.  The section collided with the sample still clutched by the final sample burner gate and cartwheeled into the air, striking one of the two operators in the head and causing injury before falling and smashing the electronic control system.  The injured worker’s co-worker was able to deactivate further sample conveyance through use of a retrofitted electronic emergency estop.  The steel mill processed approximately 30,000 samples per year and the age of the conveyor system was unknown, but believed to be in excess of 40 years old.

Such cases can be important reminders that the original testing equipment may function perfectly well, but may be retrofitted with any number of safety devices.  It is critical that the documentation, if available on older machinery, be preserved and that any maintenance records, including the addition of such safety features as light curtains (which did not exist at the time older, but still functional equipment was manufactured).  If a steel or metal mill, foundry, or component manufacturer is operating older equipment, it may be prudent to do a safety engineering study on machinery such as sample burners that exist in virtually every steel mill to determine whether retrofitting available safety devices is an option.  For example, with the conventional sample burning conveyor system, it may be that the equipment is custom designed and custom safety add-ons such as horizontal spacers can be welded or bolted across the top of the conveyor at sufficient intervals so that the potential for a sample tail to cart wheel off the conveyor becomes impossible because any vertical force is arrested inches above the conveyor rollers.

If manufacturers have questions about the adequacy of the retrofitting of safety devices on older equipment, they should consider contacting the workplace safety regulatory agency in their state.  In some states, OSHA will work with companies and may even provide free safety audits during which the party requesting the audit is granted a period of immunity to correct safety violations that are discovered.  Manufacturers should check with their state safety agencies to determine whether such programs are available and should be sure to determine whether immunity from citation is provided in exchange for the voluntary request for inspection.

The additional safety precautions are particularly important in quality control test facilities such as the sample burning room where often less-experienced workers, or temporary workers who may not be sufficiently trained or conscious of the dangers, begin work.

Recall also that any such serious injury must generally be reported to OSHA immediately and certainly within 24 hours.  In such cases OSHA investigators may also appear at the premises unannounced and, in most states, there is no right to have counsel present when OSHA is conducting its initial interviews with employees, so management should consider a plan for unplanned requests for interviews from safety investigators and ensure that employees are instructed in advance to focus on only what they actually saw, heard, or said during such interviews.